Part Number Hot Search : 
EM91450A UFR3150R UFR3150R TDA8020 24S15 10M5X GRM188 2412D
Product Description
Full Text Search
 

To Download IRFB3507 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  01/20/06 benefits  improved gate, avalanche and dynamic dv/dt ruggedness  fully characterized capacitance and avalanche soa  enhanced body diode dv/dt and di/dt capability www.irf.com 1 d 2 pak irfs3507 to-220ab IRFB3507 to-262 irfsl3507 IRFB3507 irfs3507 irfsl3507 hexfet   power mosfet applications  high efficiency synchronous rectification in smps  uninterruptible power supply  high speed power switching  hard switched and high frequency circuits s d g s d g s d g s d g v dss 75v r ds(on) typ. 7.0m max. 8.8m i d 97a absolute maximum ratings symbol parameter units i d @ t c = 25c continuous drain current, v gs @ 10v a i d @ t c = 100c continuous drain current, v gs @ 10v i dm pulsed drain current p d @t c = 25c maximum power dissipation w linear derating factor w/c v gs gate-to-source voltage v dv/dt peak diode recovery  v/ns t j operating junction and c t stg storage temperature range soldering temperature, for 10 seconds (1.6mm from case) mounting torque, 6-32 or m3 screw avalanche characteristics e as (thermally limited) single pulse avalanche energy  mj i ar avalanche current  a e ar repetitive avalanche energy  mj thermal resistance symbol parameter typ. max. units r jc junction-to-case  ??? 0.77 r cs case-to-sink, flat greased surface , to-220 0.50 ??? c/w r ja junction-to-ambient, to-220  ??? 62 r ja junction-to-ambient (pcb mount) , d 2 pak  ??? 40 280 see fig. 14, 15, 16a, 16b 190 5.0 -55 to + 175 20 1.3 10lb  in (1.1n  m) 300 max. 97  69  390 
 
 
 2 www.irf.com    calculated continuous current based on maximum allowable junction temperature. package limitation current is 75a.   repetitive rating; pulse width limited by max. junction temperature.  limited by t jmax , starting t j = 25c, l = 0.17mh, r g = 25 ? , i as = 58a, v gs =10v. part not recommended for use above this value.  i sd 58a, di/dt 390a/s, v dd v (br)dss , t j 175c.  pulse width 400s; duty cycle 2%. s d g  c oss eff. (tr) is a fixed capacitance that gives the same charging time as c oss while v ds is rising from 0 to 80% v dss .  c oss eff. (er) is a fixed capacitance that gives the same energy as c oss while v ds is rising from 0 to 80% v dss .  when mounted on 1" square pcb (fr-4 or g-10 material). for recom mended footprint and soldering techniques refer to application note #an-994.    
      static @ t j = 25c (unless otherwise specified) symbol parameter min. typ. max. units v (br)dss drain-to-source breakdown voltage 75 ??? ??? v ? v (br)dss / ? t j breakdown voltage temp. coefficient ??? 0.070 ??? v/c r ds(on) static drain-to-source on-resistance ??? 7.0 8.8 m ? v gs(th) gate threshold voltage 2.0 ??? 4.0 v i dss drain-to-source leakage current ??? ??? 20 a ??? ??? 250 i gss gate-to-source forward leakage ??? ??? 200 na gate-to-source reverse leakage ??? ??? -200 r g gate input resistance ??? 1.3 ??? ? f = 1mhz, open drain dynamic @ t j = 25c (unless otherwise specified) symbol parameter min. typ. max. units gfs forward transconductance 86 ??? ??? s q g total gate charge ??? 88 130 nc q gs gate-to-source charge ??? 24 ??? q gd gate-to-drain ("miller") charge ??? 36 ??? t d(on) turn-on delay time ??? 20 ??? ns t r rise time ??? 81 ??? t d(off) turn-off delay time ??? 52 ??? t f fall time ??? 49 ??? c iss input capacitance ??? 3540 ??? pf c oss output capacitance ??? 340 ??? c rss reverse transfer capacitance ??? 210 ??? c oss eff. (er) effective output capacitance (energy related) ??? 460 ??? c oss eff. (tr) effective output capacitance (time related) ??? 520 ??? diode characteristics symbol parameter min. typ. max. units i s continuous source current ??? ??? 97  a (body diode) i sm pulsed source current ??? ??? 390 a (body diode)  v sd diode forward voltage ??? ??? 1.3 v t rr reverse recovery time ??? 37 56 ns t j = 25c v r = 64v, ??? 45 68 t j = 125c i f = 58a q rr reverse recovery charge ??? 32 48 nc t j = 25c di/dt = 100a/s  ??? 51 77 t j = 125c i rrm reverse recovery current ??? 1.7 ??? a t j = 25c t on forward turn-on time intrinsic turn-on time is negligible (turn-on is dominated by ls+ld) conditions v ds = 50v, i d = 58a i d = 58a v gs = 20v v gs = -20v mosfet symbol showing the v ds = 60v conditions v gs = 10v  v gs = 0v v ds = 50v ? = 1.0mhz v gs = 0v, v ds = 0v to 60v  , see fig.11 v gs = 0v, v ds = 0v to 60v , see fig. 5 t j = 25c, i s = 58a, v gs = 0v  integral reverse p-n junction diode. conditions v gs = 0v, i d = 250a reference to 25c, i d = 1ma  v gs = 10v, i d = 58a  v ds = v gs , i d = 100a v ds = 75v, v gs = 0v v ds = 75v, v gs = 0v, t j = 125c i d = 58a r g = 5.6 ? v gs = 10v  v dd = 48v
 
 
 www.irf.com 3 fig 1. typical output characteristics fig 3. typical transfer characteristics fig 4. normalized on-resistance vs. temperature fig 2. typical output characteristics fig 6. typical gate charge vs. gate-to-source voltage fig 5. typical capacitance vs. drain-to-source voltage 0.1 1 10 100 1000 v ds , drain-to-source voltage (v) 0.1 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) vgs top 15v 10v 8.0v 6.0v 5.5v 5.0v 4.8v bottom 4.5v 60s pulse width tj = 25c 4.5v 0.1 1 10 100 1000 v ds , drain-to-source voltage (v) 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) 4.5v 60s pulse width tj = 175c vgs top 15v 10v 8.0v 6.0v 5.5v 5.0v 4.8v bottom 4.5v 2 4 6 8 10 v gs , gate-to-source voltage (v) 0.1 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( ) t j = 25c t j = 175c v ds = 25v 60s pulse width -60 -40 -20 0 20 40 60 80 100 120 140 160 180 t j , junction temperature (c) 0.5 1.0 1.5 2.0 2.5 r d s ( o n ) , d r a i n - t o - s o u r c e o n r e s i s t a n c e ( n o r m a l i z e d ) i d = 97a v gs = 10v 1 10 100 v ds , drain-to-source voltage (v) 100 1000 10000 100000 c , c a p a c i t a n c e ( p f ) v gs = 0v, f = 1 mhz c iss = c gs + c gd , c ds shorted c rss = c gd c oss = c ds + c gd c oss c rss c iss 0 20406080100 q g total gate charge (nc) 0.0 2.0 4.0 6.0 8.0 10.0 12.0 v g s , g a t e - t o - s o u r c e v o l t a g e ( v ) v ds = 60v v ds = 38v v ds = 15v i d = 58a
 
 
 4 www.irf.com fig 8. maximum safe operating area fig 10. drain-to-source breakdown voltage fig 7. typical source-drain diode forward voltage fig 11. typical c oss stored energy fig 9. maximum drain current vs. case temperature fig 12. maximum avalanche energy vs. draincurrent 0.0 0.4 0.8 1.2 1.6 2.0 v sd , source-to-drain voltage (v) 0.1 1 10 100 1000 i s d , r e v e r s e d r a i n c u r r e n t ( a ) t j = 25c t j = 175c v gs = 0v 25 50 75 100 125 150 175 t c , case temperature (c) 0 20 40 60 80 100 i d , d r a i n c u r r e n t ( a ) limited by package -60 -40 -20 0 20 40 60 80 100 120 140 160 180 t j , temperature ( c ) 70 75 80 85 90 95 v ( b r ) d s s , d r a i n - t o - s o u r c e b r e a k d o w n v o l t a g e ( v ) 0 1020304050607080 v ds, drain-to-source voltage (v) 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 e n e r g y ( j ) 25 50 75 100 125 150 175 starting t j , junction temperature (c) 0 200 400 600 800 1000 1200 e a s , s i n g l e p u l s e a v a l a n c h e e n e r g y ( m j ) i d top 8.9a 12a bottom 58a 1 10 100 1000 v ds , drain-to-source voltage (v) 0.01 0.1 1 10 100 1000 10000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) operation in this area limited by r ds (on) tc = 25c tj = 175c single pulse 100sec 1msec 10msec dc
 
 
 www.irf.com 5 fig 13. maximum effective transient thermal impedance, junction-to-case fig 14. typical avalanche current vs.pulsewidth fig 15. maximum avalanche energy vs. temperature notes on repetitive avalanche curves , figures 14, 15: (for further info, see an-1005 at www.irf.com) 1. avalanche failures assumption: purely a thermal phenomenon and failure occurs at a temperature far in excess of t jmax . this is validated for every part type. 2. safe operation in avalanche is allowed as long as neither t jmax nor iav (max) is exceeded. 3. equation below based on circuit and waveforms shown in figures 16a, 16b. 4. p d (ave) = average power dissipation per single avalanche pulse. 5. bv = rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. i av = allowable avalanche current. 7. ? t = allowable rise in junction temperature, not to exceed t jmax (assumed as 25c in figure 14, 15). t av = average time in avalanche. d = duty cycle in avalanche = t av f z thjc (d, t av ) = transient thermal resistance, see figures 13) p d (ave) = 1/2 ( 1.3bvi av ) =   t/ z thjc i av = 2  t/ [1.3bvz th ] e as (ar) = p d (ave) t av 1e-006 1e-005 0.0001 0.001 0.01 0.1 1 t 1 , rectangular pulse duration (sec) 0.0001 0.001 0.01 0.1 1 10 t h e r m a l r e s p o n s e ( z t h j c ) 0.20 0.10 d = 0.50 0.02 0.01 0.05 single pulse ( thermal response ) notes: 1. duty factor d = t1/t2 2. peak tj = p dm x zthjc + tc ri (c/w) i (sec) 0.2963 0.000504 0.4738 0.013890 j j 1 1 2 2 r 1 r 1 r 2 r 2 c ci= i / ri ci= i / ri 25 50 75 100 125 150 175 starting t j , junction temperature (c) 0 50 100 150 200 250 300 e a r , a v a l a n c h e e n e r g y ( m j ) top single pulse bottom 1% duty cycle i d = 58a 1.0e-06 1.0e-05 1.0e-04 1.0e-03 1.0e-02 1.0e-01 tav (sec) 0.1 1 10 100 1000 a v a l a n c h e c u r r e n t ( a ) 0.05 duty cycle = single pulse 0.10 allowed avalanche current vs avalanche pulsewidth, tav, assuming ? j = 25c and tstart = 150c. 0.01 allowed avalanche current vs avalanche pulsewidth, tav, assuming ? tj = 150c and tstart =25c (single pulse)
 
 
 6 www.irf.com  
    fig 16. threshold voltage vs. temperature  
     
    

    -75 -50 -25 0 25 50 75 100 125 150 175 200 t j , temperature ( c ) 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 v g s ( t h ) g a t e t h r e s h o l d v o l t a g e ( v ) i d = 100a i d = 250a i d = 1.0ma i d = 1.0a 100 200 300 400 500 600 700 800 900 1000 di f /dt (a/s) 0 2 4 6 8 10 12 14 i r r m ( a ) i f = 19a v r = 64v t j = 25c _____ t j = 125c ---------- 100 200 300 400 500 600 700 800 900 1000 di f /dt (a/s) 0 2 4 6 8 10 12 14 i r r m ( a ) i f = 39a v r = 64v t j = 25c _____ t j = 125c ---------- 100 200 300 400 500 600 700 800 900 1000 di f /dt (a/s) 0 50 100 150 200 250 300 350 q r r ( n c ) i f = 19a v r = 64v t j = 25c _____ t j = 125c ---------- 100 200 300 400 500 600 700 800 900 1000 di f /dt (a/s) 0 50 100 150 200 250 300 q r r ( n c ) i f = 39a v r = 64v t j = 25c _____ t j = 125c ----------
 
 
 www.irf.com 7 fig 22a. switching time test circuit fig 22b. switching time waveforms v gs v ds 9 0% 10% t d(on) t d(off) t r t f v gs pulse width < 1s duty factor < 0.1% v dd v ds l d d.u.t + - fig 21b. unclamped inductive waveforms fig 21a. unclamped inductive test circuit t p v (br)dss i as r g i as 0.01 ? t p d.u.t l v ds + - v dd driver a 15v 20v v gs fig 23a. gate charge test circuit fig 23b. gate charge waveform vds vgs id vgs(th) qgs1 qgs2 qgd qgodr fig 20. !  
   for n-channel hexfet   power mosfets 1k vc c dut 0 l 
 
  ?  
 
  ?   
  ?  

 
   
  p.w. period di/dt diode recovery dv/dt ripple 5% body diode forward drop r e-applied v oltage reverse recovery current body diode forward current v gs =10v v dd i sd driver gate drive d.u.t. i sd waveform d.u.t. v ds waveform inductor curent d = p. w . period "     " + - + + + - - -        ?      ? 
 !
"#"" ?       $
 %% ? "#""&#  
    
 
 
 8 www.irf.com to-220ab packages are not recommended for surface mount application. 

 
 

  
         lot code 1789 e xample: t his is an irf1010 n ote: "p" in as sembly line pos ition i ndi cates "l ead - f r ee" in the assembly line "c" as s embled on ww 19, 2000 international part number rectifier lot code assembly logo year 0 = 2000 dat e code week 19 line c
 
 
 www.irf.com 9 to-262 part marking information to-262 package outline dimensions are shown in millimeters (inches) logo rectifier int ernational lot code assembly logo rectifier int ernational dat e code week 19 year 7 = 1997 part number a = assembly site code or product (optional) p = de s i gn at e s l e ad- f r e e e xample: t his is an irl3103l lot code 1789 assembly part number dat e code week 19 line c lot code year 7 = 1997 as s embled on ww 19, 1997 in the assembly line "c"
 
 
 10 www.irf.com  
 

 
  


  
         dat e code year 0 = 2000 we e k 02 a = assembly site code rectifier int ernat ional part number p = de s i gnat e s l e ad - f r e e product (optional) f530s in t he ass embly line "l" as s embled on ww 02, 2000 t his is an irf530s wit h lot code 8024 international logo rectifier lot code as s e mb l y ye ar 0 = 2000 part number dat e code line l we e k 02 or f 530s logo assembly lot code
 
 
 www.irf.com 11 data and specifications subject to change without notice. this product has been designed and qualified for the industrial market. qualification standards can be found on ir?s web site. ir world headquarters: 233 kansas st., el segundo, california 90245, usa tel: (310) 252-7105 tac fax: (310) 252-7903 visit us at www.irf.com for sales contact information . 01/06  

 ! 
 3 4 4 trr f eed direction 1.85 (.073) 1.65 (.065) 1.60 (.063) 1.50 (.059) 4.10 (.161) 3.90 (.153) trl f eed direction 10.90 (.429) 10.70 (.421) 16.10 (.634) 15.90 (.626) 1.75 (.069) 1.25 (.049) 11.60 (.457) 11.40 (.449) 15.42 (.609) 15.22 (.601) 4.72 (.136) 4.52 (.178) 24.30 (.957 ) 23.90 (.941 ) 0.368 (.0145) 0.342 (.0135) 1.60 (.063) 1.50 (.059) 13.50 (.532) 12.80 (.504) 330.00 (14.173) max. 27.40 (1.079) 23.90 (.941) 60.00 (2.362 ) min. 30.40 (1.197) max. 26.40 (1.039) 24.40 (.961) notes : 1. comforms to eia-418. 2. controlling dimension: millimeter. 3. dimension measured @ hub. 4. includes flange distortion @ outer edge.
note: for the most current drawings please refer to the ir website at: http://www.irf.com/package/


▲Up To Search▲   

 
Price & Availability of IRFB3507

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X